Links Calendar Research About ACASA Home Education


ACASA Contact Information

Telecommunication Networks

Architecting Noncooperative Networks

Yannis Korilis

In noncooperative networks users make control decisions that optimize their own performance measure. Focusing on routing, we devise two methodologies for architecting noncooperative networks, that improve the overall network performance. These methodologies are motivated by problem settings arising in the provisioning and the run time phases of the network. For either phase, Nash equilibria characterize the operating point of the network. The goal of the provisioning phase is to allocate link capacities that lead to systemwide efficient Nash equilibria. In general, the solution of such design problems is counterintuitive, since adding link capacity might lead to a degradation of user performance. We show that, for systems of parallel links, such paradoxes cannot occur and the optimal solution coincides with the solution in the single-user case. We derive some extensions to general network topologies. During the run time phase, a manager controls the routing of part of the network flow. The manager is aware of the noncooperative behavior of the users and makes its routing decisions based on this information while aiming at improving the overall system performance. We obtain necessary and sufficient conditions for enforcing an equilibrium that coincides with the global systemwide optimum, and indicate that these conditions are met in many cases of interest.